Réaction chimique par échange de proton

 

 

I. Le pH et sa mesure

1. Remarque

Le caractère acide d'une solution aqueuse est dû à la présence des ions oxonium H 3 O + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaabauaaaOqaaiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaaaaa@3B6F@  dans cette solution.

 

2. Définition du pH

Le pH, grandeur sans dimension (sans unité), mesure l'acidité d'une solution aqueuse diluée. Il est défini par la relation:

pH=log[ H 3 O + ] MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaamaaL4babaGaaGPaVlaaykW7caWGWbGaamisaiabg2da9iabgkHiTiGacYgacaGGVbGaai4zamaadmaabaGaamisamaaBaaaleaacaaIZaaabeaakiaad+eadaahaaWcbeqaaiabgUcaRaaaaOGaay5waiaaw2faaiaaykW7caaMc8UaaGPaVdaaaaa@4C54@

Dans cette relation la concentration en ions oxonium est exprimée en mol.L-1.

 

Inversement la connaissance de la valeur du pH d'une solution nous permet de déterminer la concentration en ions oxonium:

[ H 3 O + ]= 10 pH MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaamaaL4babaGaaGPaVlaaykW7daWadaqaaiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaaakiaawUfacaGLDbaacqGH9aqpcaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaamiCaiaadIeaaaGccaaMc8UaaGPaVlaaykW7aaaaaa@4B30@

La concentration en ions oxonium est donnée en mol.L-1.

 

Règle : La concentration en ions oxonium obtenue par la relation [ H 3 O + ]= 10 pH MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaaykW7daWadaqaaiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaaakiaawUfacaGLDbaacqGH9aqpcaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaamiCaiaadIeaaaaaaa@44B3@  est donnée avec deux chiffres significatifs lorsque le pH est donné avec un chiffre après la virgule.

Remarque : Multiplier la concentration en ions oxonium par 10 équivaut à diminuer le pH d’une unité.

Application :

a. Déterminer le pH d'une solution S, telle que [ H 3 O + ]=5,0× 10 3 mol. L 1 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaamaadmaabaGaamisamaaBaaaleaacaaIZaaabeaakiaad+eadaahaaWcbeqaaiabgUcaRaaaaOGaay5waiaaw2faaiabg2da9iaaiwdacaGGSaGaaGimaiabgEna0kaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaIZaaaaOGaaGPaVlaad2gacaWGVbGaamiBaiaac6cacaWGmbWaaWbaaSqabeaacqGHsislcaaIXaaaaaaa@4E27@ .

pH=log( 5,0× 10 3 )=2,3 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadchacaWGibGaeyypa0JaeyOeI0IaciiBaiaac+gacaGGNbWaaeWaaeaacaaI1aGaaiilaiaaicdacqGHxdaTcaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaG4maaaaaOGaayjkaiaawMcaaiaaykW7cqGH9aqpcaaIYaGaaiilaiaaiodaaaa@4C90@

b. Déterminer la concentration en ions H 3 O + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaaaaa@3BD5@  d'une solution S2 dont pH est égal à 10,8.

[ H 3 O + ]= 10 2,8 =1,6× 10 11 mol. L 1 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaaykW7daWadaqaaiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaaakiaawUfacaGLDbaacqGH9aqpcaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGOmaiaacYcacaaI4aaaaOGaeyypa0JaaGymaiaacYcacaaI2aGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaigdacaaIXaaaaOGaaGPaVlaad2gacaWGVbGaamiBaiaac6cacaWGmbWaaWbaaSqabeaacqGHsislcaaIXaaaaaaa@563A@

 

3. Propriété fondamentale

La fonction logarithme décimal (log) est une fonction croissante donc:

*    pH grand  [ H 3 O + ] petit MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaabchacaqGibGaaeiiaiaabEgacaqGYbGaaeyyaiaab6gacaqGKbGaaeiiaiabgsDiBlaabccadaWadaqaaiaabIeadaWgaaWcbaGaae4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaaakiaawUfacaGLDbaacaqGGaGaaeiCaiaabwgacaqG0bGaaeyAaiaabshaaaa@4DBE@

*    pH petit  [ H 3 O + ] grand MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaabchacaqGibGaaeiiaiaabchacaqGLbGaaeiDaiaabMgacaqG0bGaaeiiaiabgsDiBlaabccadaWadaqaaiaabIeadaWgaaWcbaGaae4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaaakiaawUfacaGLDbaacaqGGaGaae4zaiaabkhacaqGHbGaaeOBaiaabsgaaaa@4DBE@

Remarque : à 25°C, la neutralité acido-basique correspond à pH=7,0, que les solutions acides ont un pH<7,0 et que les solutions basiques ont un pH>7,0.

 

4. Mesure du pH

On peut mesurer le pH :

*    Avec du papier pH : On dépose un goutte de la solution à étudier sur le papier et ion compare la couleur obtenue à celle d’une échelle de teinte. La précision est de 1 unité de pH.

*    Avec un pH-mètre (c’est un millivoltmètre relié à deux électrodes «Â combinées"). La précision de la mesure est de une décimale (on donne le résultat avec un chiffre après la virgule).

 

II. Solutions acido-basiques

1. Produit ionique de l’eau

Définition : On appelle produit ionique de l’eau la grandeur :

K e =[ H 3 O + ]×[H O ] MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaamaaL4babaGaaGPaVlaaykW7caWGlbWaaSbaaSqaaiaadwgaaeqaaOGaeyypa0Jaai4waiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaGccaGGDbGaey41aqRaai4waiaadIeacaWGpbWaaWbaaSqabeaacqGHsislaaGccaGGDbGaaGPaVlaaykW7caaMc8oaaaaa@4F2E@

K e MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadUeadaWgaaWcbaGaamyzaaqabaaaaa@3A18@  est une grandeur sans unité alors que les concentrations sont exprimées en mol. L 1 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaad2gacaWGVbGaamiBaiaac6cacaWGmbWaaWbaaSqabeaacqGHsislcaaIXaaaaaaa@3E61@ .

Remarques :

*    K e MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadUeadaWgaaWcbaGaamyzaaqabaaaaa@3A18@  dépend de la température. Pour toute solution aqueuse à 25°C, K e = 10 14 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadUeadaWgaaWcbaGaamyzaaqabaGccqGH9aqpcaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGymaiaaisdaaaaaaa@3F30@  ( K e MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadUeadaWgaaWcbaGaamyzaaqabaaaaa@3A18@  croît lorsque la température augmente).

*    On note p K e MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadchacaWGlbWaaSbaaSqaaiaadwgaaeqaaaaa@3B0D@  la constante telle que p K e =log K e MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaamaaL4babaGaaGPaVlaaykW7caWGWbGaam4samaaBaaaleaacaWGLbaabeaakiabg2da9iabgkHiTiGacYgacaGGVbGaai4zaiaadUeadaWgaaWcbaGaamyzaaqabaGccaaMc8UaaGPaVdaaaaa@483D@ . A 25°C, p K e =14 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadchacaWGlbWaaSbaaSqaaiaadwgaaeqaaOGaeyypa0JaaGymaiaaisdaaaa@3D96@ . (on remarquera que Ke= 10 pKe MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadUeacaWGLbGaeyypa0JaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaadchacaWGlbGaamyzaaaaaaa@4030@  )

 

Exemple : Quelle est à 25°C la concentration en ion hydroxyde dans une solution de pH=2,8 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadchacaWGibGaeyypa0JaaGOmaiaacYcacaaI4aaaaa@3D28@ .

K e =[ H 3 O + ]×[H O ] MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadUeadaWgaaWcbaGaamyzaaqabaGccqGH9aqpcaGGBbGaamisamaaBaaaleaacaaIZaaabeaakiaad+eadaahaaWcbeqaaiabgUcaRaaakiaac2facqGHxdaTcaGGBbGaamisaiaad+eadaahaaWcbeqaaiabgkHiTaaakiaac2facaaMc8oaaa@48BB@  soit [H O ]= K e [ H 3 O + ] MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaacUfacaWGibGaam4tamaaCaaaleqabaGaeyOeI0caaOGaaiyxaiabg2da9iaaykW7daWcaaqaaiaadUeadaWgaaWcbaGaamyzaaqabaaakeaacaGGBbGaamisamaaBaaaleaacaaIZaaabeaakiaad+eadaahaaWcbeqaaiabgUcaRaaakiaac2faaaaaaa@46B4@ .

On en déduit [H O ]= K e 10 pH MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaacUfacaWGibGaam4tamaaCaaaleqabaGaeyOeI0caaOGaaiyxaiabg2da9iaaykW7daWcaaqaaiaadUeadaWgaaWcbaGaamyzaaqabaaakeaacaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaamiCaiaadIeaaaaaaaaa@4598@  soit [H O ]= 10 pKe 10 pH MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaacUfacaWGibGaam4tamaaCaaaleqabaGaeyOeI0caaOGaaiyxaiabg2da9iaaykW7daWcaaqaaiaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaWGWbGaam4saiaadwgaaaaakeaacaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaamiCaiaadIeaaaaaaaaa@48F0@  et [H O ]= 10 pHpKe MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaacUfacaWGibGaam4tamaaCaaaleqabaGaeyOeI0caaOGaaiyxaiabg2da9iaaykW7caaIXaGaaGimamaaCaaaleqabaGaamiCaiaadIeacqGHsislcaWGWbGaam4saiaadwgaaaaaaa@4647@

Application numérique : à 25°C, [H O ]= 10 2,814 =6,3× 10 12 mol. L 1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaacUfacaWGibGaam4tamaaCaaaleqabaGaeyOeI0caaOGaaiyxaiabg2da9iaaykW7caaIXaGaaGimamaaCaaaleqabaGaaGOmaiaacYcacaaI4aGaeyOeI0IaaGymaiaaisdaaaGccqGH9aqpcaaI2aGaaiilaiaaiodacqGHxdaTcaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGymaiaaikdaaaGccaaMc8UaamyBaiaad+gacaWGSbGaaiOlaiaadYeadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@569B@

 

2. Échelle de pH

Le pH des solutions aqueuses usuelles s'étend de 0 à 14. La nature acide, basique ou neutre d'une solution dépend de son pH. Les différentes situations possibles sont résumées sur l'échelle de pH donnée ci-dessous.

 

Exemple : Montrons qu’une solution acide a un pH<7 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGWbGaamisaiabgYda8iaaiEdaaaa@3C2C@  à 25°C.

Pour une solution acide : [ H 3 O + ]>[O H ] MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaGGBbGaamisamaaBaaaleaacaaIZaaabeaakiaad+eadaahaaWcbeqaaiabgUcaRaaakiaac2facqGH+aGpcaGGBbGaam4taiaadIeadaahaaWcbeqaaiabgkHiTaaakiaac2faaaa@439F@  soit [ H 3 O + ]> K e [ H 3 O + ] MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaGGBbGaamisamaaBaaaleaacaaIZaaabeaakiaad+eadaahaaWcbeqaaiabgUcaRaaakiaac2facqGH+aGpdaWcaaqaaiaadUeadaWgaaWcbaGaamyzaaqabaaakeaacaGGBbGaamisamaaBaaaleaacaaIZaaabeaakiaad+eadaahaaWcbeqaaiabgUcaRaaakiaac2faaaaaaa@4687@ , d’où :

[ H 3 O + ] 2 > K e MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaGGBbGaamisamaaBaaaleaacaaIZaaabeaakiaad+eadaahaaWcbeqaaiabgUcaRaaakiaac2fadaahaaWcbeqaaiaaikdaaaGccqGH+aGpcaWGlbWaaSbaaSqaaiaadwgaaeqaaaaa@41F3@

log( [ H 3 O + ] 2 )<log( K e ) MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacqGHsislciGGSbGaai4BaiaacEgadaqadaqaaiaacUfacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4tamaaCaaaleqabaGaey4kaScaaOGaaiyxamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiabgYda8iabgkHiTiGacYgacaGGVbGaai4zamaabmaabaGaam4samaaBaaaleaacaWGLbaabeaaaOGaayjkaiaawMcaaaaa@4C85@  : la fonction log est une fonction croissante ; on change le sens de l’inégalité à cause du signe -.

2×log( [ H 3 O + ] )<p K e MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacqGHsislcaaIYaGaey41aqRaciiBaiaac+gacaGGNbWaaeWaaeaacaGGBbGaamisamaaBaaaleaacaaIZaaabeaakiaad+eadaahaaWcbeqaaiabgUcaRaaakiaac2faaiaawIcacaGLPaaacqGH8aapcaWGWbGaam4samaaBaaaleaacaWGLbaabeaaaaa@4A0A@  soit 2pH<p K e MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaaIYaGaamiCaiaadIeacqGH8aapcaWGWbGaam4samaaBaaaleaacaWGLbaabeaaaaa@3F02@  et pH< p K e 2 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGWbGaamisaiabgYda8maalaaabaGaamiCaiaadUeadaWgaaWcbaGaamyzaaqabaaakeaacaaIYaaaaaaa@3F1C@

On en déduit : pour une solution acide à 25°C pH< 14 2 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGWbGaamisaiabgYda8maalaaabaGaaGymaiaaisdaaeaacaaIYaaaaaaa@3DB0@  soit pH<7 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGWbGaamisaiabgYda8iaaiEdaaaa@3C2C@ .

 

 

III. Théorie de Brönsted des acides et des bases

1. Les acides

Définition : Un acide est une espèce chimique susceptible de céder un proton H+. On écrira :

acide X+ H + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaceaaSgHaaeyyaiaabogacaqGPbGaaeizaiaabwgacaqGGaGaeyOKH4QaamiwaiabgUcaRiaadIeadaahaaWcbeqaaiabgUcaRaaaaaa@43A2@

ou AH A + H + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaceaaSgHaaeyqaiaabIeacqGHsgIRcaWGbbWaaWbaaSqabeaacqGHsislaaGccqGHRaWkcaWGibWaaWbaaSqabeaacqGHRaWkaaaaaa@4116@

L’écriture formelle précédente est appelée demi-équation acido-basique.

Exemples :

Acide

Nom

Demi-équation

HCl

Chlorure d'hydrogène

HCl  Cl- + H+

CH3 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaabauaaaOqaaerbwvMCKfMBHbacgaqcLbuaqaaaaaaaaaWdbiaa=rbiaaa@3C35@ COOH

Acide éthanoïque ou
Acide acétique

CH3 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaabauaaaOqaaerbwvMCKfMBHbacgaqcLbuaqaaaaaaaaaWdbiaa=rbiaaa@3C35@ COOH  CH3 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaabauaaaOqaaerbwvMCKfMBHbacgaqcLbuaqaaaaaaaaaWdbiaa=rbiaaa@3C35@ COO- + H+

NH4+

Ion ammonium

NH4+  NH3 + H+

 

2. Les bases.

Définition : Une base est une espèce chimique capable de capter un proton H+. On écrira :

base+H +  Y MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaceaaSgHaaeOyaiaabggacaqGZbGaaeyzaiaabUcacaqGibWaaWbaaSqabeaacaqGRaaaaOGaaeiiaiabgkziUkaadMfaaaa@4265@

ou B + H + B H + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaceaaSgHaaeOqaiaabccacqGHRaWkcaWGibWaaWbaaSqabeaacqGHRaWkaaGccqGHsgIRcaWGcbGaamisamaaCaaaleqabaGaey4kaScaaaaa@41B2@

Exemples :

Base

Nom

Demi-équation

CH3 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaabauaaaOqaaerbwvMCKfMBHbacgaqcLbuaqaaaaaaaaaWdbiaa=rbiaaa@3C35@ COO-

Ion éthanoate ou
ion acétate

CH3 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaabauaaaOqaaerbwvMCKfMBHbacgaqcLbuaqaaaaaaaaaWdbiaa=rbiaaa@3C35@ COO- + H+  CH3 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaabauaaaOqaaerbwvMCKfMBHbacgaqcLbuaqaaaaaaaaaWdbiaa=rbiaaa@3C35@ COOH

NH3

Ammoniac

NH3 + H+  NH4+

 

3. Notion de couple acide/base

Définition : Un couple acide/base est l'ensemble d'un acide et d'une base qui se correspondent dans les réactions acido-basiques. Par convention, on écrira donc le couple sous la forme AH/ A MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGbbGaamisaiaac+cacaWGbbWaaWbaaSqabeaacqGHsislaaaaaa@3CCB@ .

L’acide AH MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGbbGaamisaaaa@3A38@  et la base A MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGbbWaaWbaaSqabeaacqGHsislaaaaaa@3A85@  sont dits conjugués.

Exemples:

 

Couple

Acide

Base

CH3 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaabauaaaOqaaerbwvMCKfMBHbacgaqcLbuaqaaaaaaaaaWdbiaa=rbiaaa@3C35@ COOH(aq)/CH3 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqaaeaadaabauaaaOqaaerbwvMCKfMBHbacgaqcLbuaqaaaaaaaaaWdbiaa=rbiaaa@3C35@ COO-(aq)

Acide éthanoïque ou acide acétique

Ion éthanoate ou ion acétate

NH4+(aq)/NH3(aq)

Ion ammonium

ammoniac

CO2(g),H2O/HCO3-(aq)

Dioxyde de carbone (dissous)

Ion hydrogénocarbonate

H3O+/H2O

Ion oxonium

Eau

H2O/HO-(aq)

Eau

Ion hydroxyde

 

 

IV. Réaction acido-basique

1. Ecriture de l'équation de la réaction

Définition : Une réaction acido-basique est une transformation mettant en jeu deux couples acido-basiques, acide1/base1 et acide2/base2, qui échangent un proton H+.

On pourra écrire chaque demi-équation acido-basique correspondant à chaque couple mis en jeu puis leur somme membre à membre qui représente l'équation de la réaction.

 Couple acide1/base1

 

acide1

   

base1 + H+

 Couple acide2/base2

 

base2 + H+

   

acide2

 


 

 

acide1 + base2

    

base1 + acide2

ou

Couple A 1 H/ A 1 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadgeadaWgaaWcbaGaaGymaaqabaGccaWGibGaai4laiaadgeadaqhaaWcbaGaaGymaaqaaiabgkHiTaaaaaa@3E04@

 

A 1 H MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadgeadaWgaaWcbaGaaGymaaqabaGccaWGibaaaa@3AB6@

   

A 1 + H + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadgeadaqhaaWcbaGaaGymaaqaaiabgkHiTaaakiabgUcaRiaadIeadaahaaWcbeqaaiabgUcaRaaaaaa@3D95@

Couple A 2 H/ A 2 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadgeadaWgaaWcbaGaaGOmaaqabaGccaWGibGaai4laiaadgeadaqhaaWcbaGaaGOmaaqaaiabgkHiTaaaaaa@3E06@

 

A 2 + H + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadgeadaqhaaWcbaGaaGOmaaqaaiabgkHiTaaakiabgUcaRiaadIeadaahaaWcbeqaaiabgUcaRaaaaaa@3D96@

   

A 2 H MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadgeadaWgaaWcbaGaaGOmaaqabaGccaWGibaaaa@3AB7@

 

 


 

 

A 1 H+ A 2 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadgeadaWgaaWcbaGaaGymaaqabaGccaWGibGaey4kaSIaamyqamaaDaaaleaacaaIYaaabaGaeyOeI0caaaaa@3E34@

    

A 1 + A 2 H MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadgeadaqhaaWcbaGaaGymaaqaaiabgkHiTaaakiabgUcaRiaadgeadaWgaaWcbaGaaGOmaaqabaGccaWGibaaaa@3E3E@

 

Exemple:

 Couple C H 3 COOH/C H 3 CO O MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadoeacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4qaiaad+eacaWGpbGaamisaiaac+cacaWGdbGaamisamaaBaaaleaacaaIZaaabeaakiaadoeacaWGpbGaam4tamaaCaaaleqabaGaeyOeI0caaaaa@44BC@

 

C H 3 COOH MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadoeacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4qaiaad+eacaWGpbGaamisaaaa@3DF7@

   

C H 3 CO O + H + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadoeacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4qaiaad+eacaWGpbWaaWbaaSqabeaacqGHsislaaGccqGHRaWkcaWGibWaaWbaaSqabeaacqGHRaWkaaaaaa@410C@

 Couple N H 4 + /N H 3 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaad6eacaWGibWaa0baaSqaaiaaisdaaeaacqGHRaWkaaGccaGGVaGaamOtaiaadIeadaWgaaWcbaGaaG4maaqabaaaaa@3EE5@

 

N H 3 + H + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaad6eacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamisamaaCaaaleqabaGaey4kaScaaaaa@3D83@

   

N H 4 + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaad6eacaWGibWaa0baaSqaaiaaisdaaeaacqGHRaWkaaaaaa@3B9F@

 


 

 

C H 3 COOH+N H 3 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadoeacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4qaiaad+eacaWGpbGaamisaiabgUcaRiaad6eacaWGibWaaSbaaSqaaiaaiodaaeqaaaaa@4162@

    

C H 3 CO O +N H 4 + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadoeacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4qaiaad+eacaWGpbWaaWbaaSqabeaacqGHsislaaGccqGHRaWkcaWGobGaamisamaaDaaaleaacaaI0aaabaGaey4kaScaaaaa@429D@

 

2. Cas particulier de l'eau

a. L'eau se comporte comme une base vis à vis d'un acide

 Couple C H 3 COOH/C H 3 CO O MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadoeacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4qaiaad+eacaWGpbGaamisaiaac+cacaWGdbGaamisamaaBaaaleaacaaIZaaabeaakiaadoeacaWGpbGaam4tamaaCaaaleqabaGaeyOeI0caaaaa@44BC@

 

C H 3 COOH MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadoeacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4qaiaad+eacaWGpbGaamisaaaa@3DF7@

   

C H 3 CO O + H + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadoeacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4qaiaad+eacaWGpbWaaWbaaSqabeaacqGHsislaaGccqGHRaWkcaWGibWaaWbaaSqabeaacqGHRaWkaaaaaa@410C@

 Couple H 3 O + / H 2 O MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaGccaGGVaGaamisamaaBaaaleaacaaIYaaabeaakiaad+eaaaa@3F25@

 

H 2 O+ H + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeadaWgaaWcbaGaaGOmaaqabaGccaWGpbGaey4kaSIaamisamaaCaaaleqabaGaey4kaScaaaaa@3D83@

   

H 3 O + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaaaaa@3BD5@

 


 

 

C H 3 COOH+ H 2 O MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadoeacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4qaiaad+eacaWGpbGaamisaiabgUcaRiaadIeadaWgaaWcbaGaaGOmaaqabaGccaWGpbaaaa@416C@

    

C H 3 CO O + H 3 O + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadoeacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4qaiaad+eacaWGpbWaaWbaaSqabeaacqGHsislaaGccqGHRaWkcaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4tamaaCaaaleqabaGaey4kaScaaaaa@42D3@

 

b. L'eau se comporte comme un acide vis à vis d'une base

 Couple H 2 O/O H MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeadaWgaaWcbaGaaGOmaaqabaGccaWGpbGaai4laiaad+eacaWGibWaaWbaaSqabeaacqGHsislaaaaaa@3E33@

 

H 2 O MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeadaWgaaWcbaGaaGOmaaqabaGccaWGpbaaaa@3AC5@

   

H O + H + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGibGaam4tamaaCaaaleqabaGaeyOeI0caaOGaey4kaSIaamisamaaCaaaleqabaGaey4kaScaaaaa@3E28@

 Couple C H 3 COOH/C H 3 CO O MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadoeacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4qaiaad+eacaWGpbGaamisaiaac+cacaWGdbGaamisamaaBaaaleaacaaIZaaabeaakiaadoeacaWGpbGaam4tamaaCaaaleqabaGaeyOeI0caaaaa@44BC@

 

C H 3 CO O + H + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadoeacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4qaiaad+eacaWGpbWaaWbaaSqabeaacqGHsislaaGccqGHRaWkcaWGibWaaWbaaSqabeaacqGHRaWkaaaaaa@410C@

   

C H 3 COOH MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadoeacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4qaiaad+eacaWGpbGaamisaaaa@3DF7@

 


 

 

C H 3 CO O + H 2 O MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadoeacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4qaiaad+eacaWGpbWaaWbaaSqabeaacqGHsislaaGccqGHRaWkcaWGibWaaSbaaSqaaiaaikdaaeqaaOGaam4taaaa@41C3@

    

C H 3 COOH+H O MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadoeacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4qaiaad+eacaWGpbGaamisaiabgUcaRiaadIeacaWGpbWaaWbaaSqabeaacqGHsislaaaaaa@4194@

 

 

V. Deux familles d’acides et de bases

1. Acide fort (voir TP)

Définition : Certains acides AH, appelés acides forts, réagissent totalement avec l'eau suivant l'équation:

AH+ H 2 O A + H 3 O + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadgeacaWGibGaey4kaSIaamisamaaBaaaleaacaaIYaaabeaakiaad+eacqGHsgIRcaWGbbWaaWbaaSqabeaacqGHsislaaGccqGHRaWkcaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4tamaaCaaaleqabaGaey4kaScaaaaa@4596@

L'acide AH n'existe donc pas dans l'eau ; il est sous la forme A MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadgeadaahaaWcbeqaaiabgkHiTaaaaaa@3A12@  et H 3 O + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaaaaa@3BD5@ .

Exemple : Le chlorure d'hydrogène HCl MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGibGaam4qaiaadYgaaaa@3B2B@  est un acide fort: HCl+ H 2 OC l + H 3 O + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeacaWGdbGaamiBaiabgUcaRiaadIeadaWgaaWcbaGaaGOmaaqabaGccaWGpbGaeyOKH4Qaam4qaiaadYgadaahaaWcbeqaaiabgkHiTaaakiabgUcaRiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaaaaa@477C@

 

Application : Calculer le pH d'une solution de volume V=0,20L réalisée en dissolvant n=5,0× 10 3 mol MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGUbGaeyypa0JaaGynaiaacYcacaaIWaGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiodaaaGccaWGTbGaam4BaiaadYgaaaa@450B@  d'acide sulfurique dans l’eau.

Equation

H 2 S O 4 + MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeadaWgaaWcbaGaaGOmaaqabaGccaWGtbGaam4tamaaBaaaleaacaaI0aaabeaakiabgUcaRaaa@3D72@

2 H 2 O MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaaikdacaaMc8UaamisamaaBaaaleaacaaIYaaabeaakiaad+eacqGHsgIRaaa@3EF8@

2 H 3 O + + MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaaikdacaaMc8UaamisamaaBaaaleaacaaIZaaabeaakiaad+eadaahaaWcbeqaaiabgUcaRaaakiabgUcaRaaa@3F07@

S O 4 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadofacaWGpbWaa0baaSqaaiaaisdaaeaacaaIYaGaeyOeI0caaaaa@3C71@

Etat

Quantité de matière (mol)

Initial

n MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGUbaaaa@3998@

excès

0 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaaicdaaaa@38EC@

0 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaaicdaaaa@38EC@

En cours

nx MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGUbGaeyOeI0IaamiEaaaa@3B82@

excès

2x MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaaikdacaWG4baaaa@39EB@

x MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIhaaaa@392F@

Final

n x max MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGUbGaeyOeI0IaamiEamaaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaaaa@3E82@

excès

2 x max MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaaikdacaWG4bWaaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@3CEB@

x max MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIhadaWgaaWcbaGaciyBaiaacggacaGG4baabeaaaaa@3C2F@

 

Comme la réaction est totale, n ( H 2 S O 4 ) f =0 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGUbGaaiikaiaadIeadaWgaaWcbaGaaGOmaaqabaGccaWGtbGaam4tamaaBaaaleaacaaI0aaabeaakiaacMcadaWgaaWcbaGaamOzaaqabaGccqGH9aqpcaaIWaaaaa@4231@  et n x max =0 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGUbGaeyOeI0IaamiEamaaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaOGaeyypa0JaaGimaaaa@404C@  soit x max =n=5,0× 10 3 mol MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWG4bWaaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaGccqGH9aqpcaWGUbGaeyypa0JaaGynaiaacYcacaaIWaGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiodaaaGccaWGTbGaam4BaiaadYgaaaa@4A18@ .

[ H 3 O + ]= 2 x max V MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaadaWadaqaaiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaaakiaawUfacaGLDbaacqGH9aqpdaWcaaqaaiaaikdacaWG4bWaaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaaakeaacaWGwbaaaaaa@44F8@   [ H 3 O + ]= 2×5,0× 10 3 0,20 =5,0× 10 2 mol MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaadaWadaqaaiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaaakiaawUfacaGLDbaacqGH9aqpdaWcaaqaaiaaikdacqGHxdaTcaaI1aGaaiilaiaaicdacqGHxdaTcaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaG4maaaaaOqaaiaaicdacaGGSaGaaGOmaiaaicdaaaGaeyypa0JaaGynaiaacYcacaaIWaGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaikdaaaGccaaMc8UaamyBaiaad+gacaWGSbaaaa@59A0@ .L-1.

pH=log( [ H 3 O + ] ) MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGWbGaamisaiabg2da9iabgkHiTiGacYgacaGGVbGaai4zamaabmaabaWaamWaaeaacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4tamaaCaaaleqabaGaey4kaScaaaGccaGLBbGaayzxaaaacaGLOaGaayzkaaaaaa@4652@  soit pH=log( 5,0× 10 2 )=1,3 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGWbGaamisaiabg2da9iabgkHiTiGacYgacaGGVbGaai4zamaabmaabaGaaGynaiaacYcacaaIWaGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaikdaaaaakiaawIcacaGLPaaacqGH9aqpcaaIXaGaaiilaiaaiodaaaa@4B76@ .

 

Remarque : dans le cas d’un monoacide fort,

Equation

AH+ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadgeacaWGibGaey4kaScaaa@3AA6@

H 2 O MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeadaWgaaWcbaGaaGOmaaqabaGccaWGpbGaeyOKH4kaaa@3CB1@

H 3 O + + MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaGccqGHRaWkaaa@3CC0@

A MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadgeadaahaaWcbeqaaiabgkHiTaaaaaa@3A11@

Etat

Quantité de matière (mol)

Initial

n MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGUbaaaa@3998@

excès

0 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaaicdaaaa@38EC@

0 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaaicdaaaa@38EC@

En cours

nx MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGUbGaeyOeI0IaamiEaaaa@3B82@

excès

x MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIhaaaa@392F@

x MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIhaaaa@392F@

Final

n x max MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGUbGaeyOeI0IaamiEamaaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaaaa@3E82@

excès

x max MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIhadaWgaaWcbaGaciyBaiaacggacaGG4baabeaaaaa@3C2F@

x max MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIhadaWgaaWcbaGaciyBaiaacggacaGG4baabeaaaaa@3C2F@

 

La concentration de la solution s’écrit c= n V MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadogacqGH9aqpdaWcaaqaaiaad6gaaeaacaWGwbaaaaaa@3BFE@ , c'est-à-dire c= x max V MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadogacqGH9aqpdaWcaaqaaiaadIhadaWgaaWcbaGaciyBaiaacggacaGG4baabeaaaOqaaiaadAfaaaaaaa@3F12@  puisque x max =n MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIhadaWgaaWcbaGaciyBaiaacggacaGG4baabeaakiabg2da9iaad6gaaaa@3E32@ .

La concentration en ions oxonium s’écrit [ H 3 O + ]= n( H 3 O + ) V MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaamaadmaabaGaamisamaaBaaaleaacaaIZaaabeaakiaad+eadaahaaWcbeqaaiabgUcaRaaaaOGaay5waiaaw2faaiabg2da9maalaaabaGaamOBaiaacIcacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4tamaaCaaaleqabaGaey4kaScaaOGaaiykaaqaaiaadAfaaaaaaa@45BB@ , c'est-à-dire [ H 3 O + ]= x max V MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaamaadmaabaGaamisamaaBaaaleaacaaIZaaabeaakiaad+eadaahaaWcbeqaaiabgUcaRaaaaOGaay5waiaaw2faaiabg2da9maalaaabaGaamiEamaaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaaGcbaGaamOvaaaaaaa@43C9@  puisque n( H 3 O + )= x max MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaad6gacaGGOaGaamisamaaBaaaleaacaaIZaaabeaakiaad+eadaahaaWcbeqaaiabgUcaRaaakiaacMcacqGH9aqpcaWG4bWaaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@432E@ .

On en déduit :

[ H 3 O + ]=c et pH=logc MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaamaaL4babaGaaGPaVlaaykW7daWadaqaaiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaaakiaawUfacaGLDbaacqGH9aqpcaWGJbGaaeiiaiaabwgacaqG0bGaaeiiaiaadchacaWGibGaeyypa0JaeyOeI0IaciiBaiaac+gacaGGNbGaam4yaiaaykW7caaMc8UaaGPaVdaaaaa@524F@  (uniquement pour un acide fort)

Application : Calculer le pH d'une solution d’acide chlorhydrique (solution de chlorure d’hydrogène) de concentration c=5,0× 10 3 mol. L 1 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGJbGaeyypa0JaaGynaiaacYcacaaIWaGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiodaaaGccaWGTbGaam4BaiaadYgacaGGUaGaamitamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@4858@  d'acide sulfurique dans l’eau.

Le chlorure d’hydrogène est un acide fort : pH=log(5,0× 10 3 )=2,3 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadchacaWGibGaeyypa0JaeyOeI0IaciiBaiaac+gacaGGNbGaaiikaiaaiwdacaGGSaGaaGimaiabgEna0kaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaIZaaaaOGaaiykaiabg2da9iaaikdacaGGSaGaaG4maaaa@4AD5@ .

 

2. Base forte

Certaines bases B, appelées bases fortes, libèrent des ions H O MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGibGaam4tamaaCaaaleqabaGaeyOeI0caaaaa@3B60@  par dissolution dans l'eau ou par réaction totale avec l'eau. Ces bases n'existent donc pas en présence d'eau.

B B + +O H MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadkeacqGHsgIRcaWGcbWaaWbaaSqabeaacqGHRaWkaaGccqGHRaWkcaWGpbGaamisamaaCaaaleqabaGaeyOeI0caaaaa@4063@

ou B+ H 2 OB H + +O H MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadkeacqGHRaWkcaWGibWaaSbaaSqaaiaaikdaaeqaaOGaam4taiabgkziUkaadkeacaWGibWaaWbaaSqabeaacqGHRaWkaaGccqGHRaWkcaWGpbGaamisamaaCaaaleqabaGaeyOeI0caaaaa@44A5@

La base B n'existe donc pas dans l'eau ; il est sous la forme B H + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadkeacaWGibWaaWbaaSqabeaacqGHRaWkaaaaaa@3AD5@  et H 2 O MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeadaWgaaWcbaGaaGOmaaqabaGccaWGpbaaaa@3AC5@ .

Exemple : L’ion éthanolate C 6 H 5 O MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadoeadaWgaaWcbaGaaGOnaaqabaGccaWGibWaaSbaaSqaaiaaiwdaaeqaaOGaam4tamaaCaaaleqabaGaeyOeI0caaaaa@3DA0@  est une base forte: C 6 H 5 O + H 2 O C 6 H 5 OH+O H MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGdbWaaSbaaSqaaiaaiAdaaeqaaOGaamisamaaBaaaleaacaaI1aaabeaakiaad+eadaahaaWcbeqaaiabgkHiTaaakiabgUcaRiaadIeadaWgaaWcbaGaaGOmaaqabaGccaWGpbGaeyOKH4Qaam4qamaaBaaaleaacaaI2aaabeaakiaadIeadaWgaaWcbaGaaGynaaqabaGccaWGpbGaamisaiabgUcaRiaad+eacaWGibWaaWbaaSqabeaacqGHsislaaaaaa@4C3D@

 

Remarque : pH d’une solution de monobase forte :

Equation

B+ MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadkeacqGHRaWkaaa@39DB@

H 2 O MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeadaWgaaWcbaGaaGOmaaqabaGccaWGpbGaeyOKH4kaaa@3CB1@

B H + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadkeacaWGibWaaWbaaSqabeaacqGHRaWkaaaaaa@3AD5@

+O H MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiabgUcaRiaad+eacaWGibWaaWbaaSqabeaacqGHsislaaaaaa@3BCF@

Etat

Quantité de matière (mol)

Initial

n MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGUbaaaa@3998@

excès

0 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaaicdaaaa@38EC@

0 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaaicdaaaa@38EC@

En cours

nx MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGUbGaeyOeI0IaamiEaaaa@3B82@

excès

x MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIhaaaa@392F@

x MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIhaaaa@392F@

Final

n x max MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGUbGaeyOeI0IaamiEamaaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaaaa@3E82@

excès

x max MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIhadaWgaaWcbaGaciyBaiaacggacaGG4baabeaaaaa@3C2F@

x max MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIhadaWgaaWcbaGaciyBaiaacggacaGG4baabeaaaaa@3C2F@

 

La concentration de la solution s’écrit c= n V MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadogacqGH9aqpdaWcaaqaaiaad6gaaeaacaWGwbaaaaaa@3BFE@ , c'est-à-dire c= x max V MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadogacqGH9aqpdaWcaaqaaiaadIhadaWgaaWcbaGaciyBaiaacggacaGG4baabeaaaOqaaiaadAfaaaaaaa@3F12@  puisque x max =n MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIhadaWgaaWcbaGaciyBaiaacggacaGG4baabeaakiabg2da9iaad6gaaaa@3E32@ .

La concentration en ions hydroxyde s’écrit [ O H ]= n(O H ) V MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaamaadmaabaGaam4taiaadIeadaahaaWcbeqaaiabgkHiTaaaaOGaay5waiaaw2faaiabg2da9maalaaabaGaamOBaiaacIcacaWGpbGaamisamaaCaaaleqabaGaeyOeI0caaOGaaiykaaqaaiaadAfaaaaaaa@43EB@ , c'est-à-dire [ O H ]= x max V MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaamaadmaabaGaam4taiaadIeadaahaaWcbeqaaiabgkHiTaaaaOGaay5waiaaw2faaiabg2da9maalaaabaGaamiEamaaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaaGcbaGaamOvaaaaaaa@42E1@  puisque n(O H )= x max MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaad6gacaGGOaGaam4taiaadIeadaahaaWcbeqaaiabgkHiTaaakiaacMcacqGH9aqpcaWG4bWaaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@4246@ .

On en déduit que [ O H ]=c MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaamaadmaabaGaam4taiaadIeadaahaaWcbeqaaiabgkHiTaaaaOGaay5waiaaw2faaiabg2da9iaadogaaaa@3ED7@ .

Or [ H 3 O + ]= Ke [ O H ] MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaamaadmaabaGaamisamaaBaaaleaacaaIZaaabeaakiaad+eadaahaaWcbeqaaiabgUcaRaaaaOGaay5waiaaw2faaiabg2da9maalaaabaGaam4saiaadwgaaeaadaWadaqaaiaad+eacaWGibWaaWbaaSqabeaacqGHsislaaaakiaawUfacaGLDbaaaaaaaa@4558@  soit [ H 3 O + ]= Ke c MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaamaadmaabaGaamisamaaBaaaleaacaaIZaaabeaakiaad+eadaahaaWcbeqaaiabgUcaRaaaaOGaay5waiaaw2faaiabg2da9maalaaabaGaam4saiaadwgaaeaacaWGJbaaaaaa@4189@

D’où le pH de la solution : pH=log( K e c ) MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadchacaWGibGaeyypa0JaeyOeI0IaciiBaiaac+gacaGGNbWaaeWaaeaadaWcaaqaaiaadUeadaWgaaWcbaGaamyzaaqabaaakeaacaWGJbaaaaGaayjkaiaawMcaaaaa@4328@  soit pH=log( K e )+logc MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadchacaWGibGaeyypa0JaeyOeI0IaciiBaiaac+gacaGGNbWaaeWaaeaacaWGlbWaaSbaaSqaaiaadwgaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaciiBaiaac+gacaGGNbGaam4yaaaa@46CA@  et

pH=p K e +logc MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaamaaL4babaGaaGPaVlaaykW7caWGWbGaamisaiabg2da9iaadchacaWGlbWaaSbaaSqaaiaadwgaaeqaaOGaey4kaSIaciiBaiaac+gacaGGNbGaam4yaiaaykW7caaMc8UaaGPaVdaaaaa@4A77@  (uniquement pour une base forte)

Application : Calculer, à 25°C, le pH d'une solution d’hydroxyde de sodium de concentration c=5,0× 10 3 mol. L 1 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGJbGaeyypa0JaaGynaiaacYcacaaIWaGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiodaaaGccaWGTbGaam4BaiaadYgacaGGUaGaamitamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@4858@ .

L’hydroxyde de sodium est une base forte : pH=14+log(5,0× 10 3 )=11,7 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadchacaWGibGaeyypa0JaaGymaiaaisdacqGHRaWkciGGSbGaai4BaiaacEgacaGGOaGaaGynaiaacYcacaaIWaGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiodaaaGccaGGPaGaeyypa0JaaGymaiaaigdacaGGSaGaaG4naaaa@4D01@ .

 

3. Mélange d’un acide fort et d’une base forte

La réaction acido-basique entre un acide fort et une base forte d’un autre couple est quasi-totale.

Exemple : réaction entre une solution d’acide chlorhydrique et solution d’hydroxyde de sodium.

Le chlorure d’hydrogène est un acide fort : HCl+ H 2 OC l + H 3 O + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeacaWGdbGaamiBaiabgUcaRiaadIeadaWgaaWcbaGaaGOmaaqabaGccaWGpbGaeyOKH4Qaam4qaiaadYgadaahaaWcbeqaaiabgkHiTaaakiabgUcaRiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaaaaa@477C@

Sa solution contient des ions chlorure C l MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadoeacaWGSbWaaWbaaSqabeaacqGHsislaaaaaa@3B05@  et des ions oxonium H 3 O + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaaaaa@3BD5@ .

L’hydroxyde de sodium est une base forte : NaOHN a + +H O MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaad6eacaWGHbGaam4taiaadIeacqGHsgIRcaWGobGaamyyamaaCaaaleqabaGaey4kaScaaOGaey4kaSIaamisaiaad+eadaahaaWcbeqaaiabgkHiTaaaaaa@43E8@

Sa solution contient des ions sodium N a + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaad6eacaWGHbWaaWbaaSqabeaacqGHRaWkaaaaaa@3AFA@  et des ions hydroxyde O H MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaad+eacaWGibWaaWbaaSqabeaacqGHsislaaaaaa@3AED@ .

Lorsqu’on mélange ces deux solutions, il y a réaction quasi-totale entre les ions oxonium, acide du couple H 3 O + / H 2 O MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaGccaGGVaGaamisamaaBaaaleaacaaIYaaabeaakiaad+eaaaa@3F25@  et les ions hydroxyde, base du couple O H / H 2 O MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaad+eacaWGibWaaWbaaSqabeaacqGHsislaaGccaGGVaGaamisamaaBaaaleaacaaIYaaabeaakiaad+eaaaa@3E3D@ .

 Couple H 3 O + / H 2 O MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaGccaGGVaGaamisamaaBaaaleaacaaIYaaabeaakiaad+eaaaa@3F25@

 

H 3 O + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaaaaa@3BD5@

   

H 2 O+ H + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGibWaaSbaaSqaaiaaikdaaeqaaOGaam4taiabgUcaRiaadIeadaahaaWcbeqaaiabgUcaRaaaaaa@3DF6@

 Couple H 2 O/O H MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeadaWgaaWcbaGaaGOmaaqabaGccaWGpbGaai4laiaad+eacaWGibWaaWbaaSqabeaacqGHsislaaaaaa@3E33@

 

O H + H + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaad+eacaWGibWaaWbaaSqabeaacqGHsislaaGccqGHRaWkcaWGibWaaWbaaSqabeaacqGHRaWkaaaaaa@3DB5@

   

H 2 O MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeadaWgaaWcbaGaaGOmaaqabaGccaWGpbaaaa@3AC5@

 


 

 

H 3 O + +O H MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaGccqGHRaWkcaWGpbGaamisamaaCaaaleqabaGaeyOeI0caaaaa@3F7C@

    

2 H 2 O MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaaikdacaaMc8UaamisamaaBaaaleaacaaIYaaabeaakiaad+eaaaa@3D0C@

 

4. Acide faible, base faible: notion d'équilibre

Définition

Certains acides AH (appelés acides faibles) réagissent partiellement avec l'eau suivant l'équation:

AH+ H 2 O A + H 3 O + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadgeacaWGibGaey4kaSIaamisamaaBaaaleaacaaIYaaabeaakiaad+eacqWIehcGcaWGbbWaaWbaaSqabeaacqGHsislaaGccqGHRaWkcaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4tamaaCaaaleqabaGaey4kaScaaaaa@459F@

A la fin de la réaction, toutes les espèces figurant dans l'équation sont présentes, en particulier AH et A-.

Cette réaction partielle (ou limitée) conduit à un état d'équilibre.

 

Exemple : C H 3 COOH+ H 2 OC H 3 CO O + H 3 O + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadoeacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4qaiaad+eacaWGpbGaamisaiabgUcaRiaadIeadaWgaaWcbaGaaGOmaaqabaGccaWGpbGaeSiXHaOaam4qaiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGdbGaam4taiaad+eadaahaaWcbeqaaiabgkHiTaaakiabgUcaRiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaaaaa@4E03@

 

Remarque : la base conjuguée A- de l’acide AH est aussi une base faible, c'est-à-dire que sa réaction avec l’eau conduit à un état d’équilibre.

 

 

VI. Constante d'acidité d’un couple acido-basique

1. Définition

La constante d'acidité KA est une constante sans dimension caractéristique d’un couple acide faible/base faible.

Pour un acide faible AH dont la réaction avec l’eau s’écrit AH+ H 2 O A + H 3 O + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadgeacaWGibGaey4kaSIaamisamaaBaaaleaacaaIYaaabeaakiaad+eacqWIehcGcaWGbbWaaWbaaSqabeaacqGHsislaaGccqGHRaWkcaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4tamaaCaaaleqabaGaey4kaScaaaaa@459F@ , elle est définie par la relation :

K A = [ H 3 O + ]×[ A ] [AH] MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaamaaL4babaGaaGPaVlaaykW7caWGlbWaaSbaaSqaaiaadgeaaeqaaOGaeyypa0ZaaSaaaeaacaGGBbGaamisamaaBaaaleaacaaIZaaabeaakiaad+eadaahaaWcbeqaaiabgUcaRaaakiaac2facqGHxdaTcaGGBbGaamyqamaaCaaaleqabaGaeyOeI0caaOGaaiyxaaqaaiaacUfacaWGbbGaamisaiaac2faaaGaaGzaVlaaykW7caaMc8UaaGPaVdaaaaa@531D@

les concentrations étant celles de l’état final (elle n’évoluent plus).

 

Remarque : La valeur de KA ne dépend que de la température.

 

2. Echelle des pKA

Définition : le p K A MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadchacaWGlbWaaSbaaSqaaiaadgeaaeqaaaaa@3AE9@  d’un couple acide faible/base faible es défini par la relation :

p K A =log( K A ) MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaamaaL4babaGaaGPaVlaaykW7caWGWbGaam4samaaBaaaleaacaWGbbaabeaakiabg2da9iabgkHiTiGacYgacaGGVbGaai4zaiaacIcacaWGlbWaaSbaaSqaaiaadgeaaeqaaOGaaiykaiaaykW7caaMc8UaaGPaVdaaaaa@4AD9@

Les p K A MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadchacaWGlbWaaSbaaSqaaiaadgeaaeqaaaaa@3AE9@  permettent de comparer l'avancement final de la réaction de différents acides faibles avec l'eau.

Plus la valeur de K A MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadUeadaWgaaWcbaGaamyqaaqabaaaaa@39F4@  est grande, plus celle de p K A MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadchacaWGlbWaaSbaaSqaaiaadgeaaeqaaaaa@3AE9@  est petite. Le pH de la solution est plus petit et l'avancement de la réaction est plus grand.

En solution aqueuse, le plus petit p K A MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadchacaWGlbWaaSbaaSqaaiaadgeaaeqaaaaa@3AE9@  est celui de l'acide H 3 O + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaaaaa@3BD5@ . Sa valeur est exactement 0.

<Contenu manuscrit>

 

3. Exemples

a. Couple acide éthanoïque / ion éthanoate

Equation de la réaction avec l'eau: C H 3 COOH+ H 2 OC H 3 CO O + H 3 O + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadoeacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4qaiaad+eacaWGpbGaamisaiabgUcaRiaadIeadaWgaaWcbaGaaGOmaaqabaGccaWGpbGaeSiXHaOaam4qaiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGdbGaam4taiaad+eadaahaaWcbeqaaiabgkHiTaaakiabgUcaRiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaaaaa@4E03@

Expression de la constante d'acidité: K A = [ H 3 O + ]×[C H 3 CO O ] [C H 3 COOH] MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadUeadaWgaaWcbaGaamyqaaqabaGccqGH9aqpdaWcaaqaaiaacUfacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4tamaaCaaaleqabaGaey4kaScaaOGaaiyxaiabgEna0kaacUfacaWGdbGaamisamaaBaaaleaacaaIZaaabeaakiaadoeacaWGpbGaam4tamaaCaaaleqabaGaeyOeI0caaOGaaiyxaaqaaiaacUfacaWGdbGaamisamaaBaaaleaacaaIZaaabeaakiaadoeacaWGpbGaam4taiaadIeacaGGDbaaaiaaygW7aaa@5383@

Valeur à 25°C: K A =1,58× 10 5 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadUeadaWgaaWcbaGaamyqaaqabaGccqGH9aqpcaaIXaGaaiilaiaaiwdacaaI4aGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiwdaaaaaaa@4355@  et p K A =4,80 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadchacaWGlbWaaSbaaSqaaiaadgeaaeqaaOGaeyypa0JaaGinaiaacYcacaaI4aGaaGimaaaa@3EE3@ .

b. Couple ion ammonium / ammoniac

Equation de la réaction avec l'eau: N H 4 + + H 2 ON H 3 + H 3 O + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaad6eacaWGibWaa0baaSqaaiaaisdaaeaacqGHRaWkaaGccqGHRaWkcaWGibWaaSbaaSqaaiaaikdaaeqaaOGaam4taiablsCiakaad6eacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamisamaaBaaaleaacaaIZaaabeaakiaad+eadaahaaWcbeqaaiabgUcaRaaaaaa@482C@

Expression de la constante d'acidité: K A = [ H 3 O + ]×[N H 3 ] [N H 4 + ] MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadUeadaWgaaWcbaGaamyqaaqabaGccqGH9aqpdaWcaaqaaiaacUfacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4tamaaCaaaleqabaGaey4kaScaaOGaaiyxaiabgEna0kaacUfacaWGobGaamisamaaBaaaleaacaaIZaaabeaakiaac2faaeaacaGGBbGaamOtaiaadIeadaqhaaWcbaGaaGinaaqaaiabgUcaRaaakiaac2faaaGaaGzaVdaa@4DAC@

Valeur à 25°C: K A =5,62× 10 10 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadUeadaWgaaWcbaGaamyqaaqabaGccqGH9aqpcaaI1aGaaiilaiaaiAdacaaIYaGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaigdacaaIWaaaaaaa@440A@  et p K A =9,25 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadchacaWGlbWaaSbaaSqaaiaadgeaaeqaaOGaeyypa0JaaGyoaiaacYcacaaIYaGaaGynaaaa@3EE7@ .

 

4. Domaines de prédominances

a. Cas général

Définition : Une espèce A est prédominante par rapport à une espèce B si:

[A]>[B] MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaGGBbGaamyqaiaac2facqGH+aGpcaGGBbGaamOqaiaac2faaaa@3EBA@

b. Relation donnant le pH d'une solution aqueuse contenant un acide A et sa base conjuguée B.

On a K A = [ H 3 O + ]×[ A ] [AH] MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadUeadaWgaaWcbaGaamyqaaqabaGccqGH9aqpdaWcaaqaaiaacUfacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4tamaaCaaaleqabaGaey4kaScaaOGaaiyxaiabgEna0kaacUfacaWGbbWaaWbaaSqabeaacqGHsislaaGccaGGDbaabaGaai4waiaadgeacaWGibGaaiyxaaaaaaa@4995@  soit [ H 3 O + ]= K A ×[AH] [ A ] MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaacUfacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4tamaaCaaaleqabaGaey4kaScaaOGaaiyxaiabg2da9maalaaabaGaam4samaaBaaaleaacaWGbbaabeaakiabgEna0kaacUfacaWGbbGaamisaiaac2faaeaacaGGBbGaamyqamaaCaaaleqabaGaeyOeI0caaOGaaiyxaaaaaaa@4995@ . On en déduit :

log( [ H 3 O + ] )=log( K A ×[AH] [ A ] ) MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiabgkHiTiGacYgacaGGVbGaai4zamaabmaabaGaai4waiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaGccaGGDbaacaGLOaGaayzkaaGaeyypa0JaeyOeI0IaciiBaiaac+gacaGGNbWaaeWaaeaadaWcaaqaaiaadUeadaWgaaWcbaGaamyqaaqabaGccqGHxdaTcaGGBbGaamyqaiaadIeacaGGDbaabaGaai4waiaadgeadaahaaWcbeqaaiabgkHiTaaakiaac2faaaaacaGLOaGaayzkaaaaaa@5421@

log( [ H 3 O + ] )=log( K A )log( [AH] [ A ] ) MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiabgkHiTiGacYgacaGGVbGaai4zamaabmaabaGaai4waiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaGccaGGDbaacaGLOaGaayzkaaGaeyypa0JaeyOeI0IaciiBaiaac+gacaGGNbWaaeWaaeaacaWGlbWaaSbaaSqaaiaadgeaaeqaaaGccaGLOaGaayzkaaGaeyOeI0IaciiBaiaac+gacaGGNbWaaeWaaeaadaWcaaqaaiaacUfacaWGbbGaamisaiaac2faaeaacaGGBbGaamyqamaaCaaaleqabaGaeyOeI0caaOGaaiyxaaaaaiaawIcacaGLPaaaaaa@5750@

log( [ H 3 O + ] )=log( K A )+log( [ A ] [AH] ) MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiabgkHiTiGacYgacaGGVbGaai4zamaabmaabaGaai4waiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaaWbaaSqabeaacqGHRaWkaaGccaGGDbaacaGLOaGaayzkaaGaeyypa0JaeyOeI0IaciiBaiaac+gacaGGNbWaaeWaaeaacaWGlbWaaSbaaSqaaiaadgeaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaciiBaiaac+gacaGGNbWaaeWaaeaadaWcaaqaaiaacUfacaWGbbWaaWbaaSqabeaacqGHsislaaGccaGGDbaabaGaai4waiaadgeacaWGibGaaiyxaaaaaiaawIcacaGLPaaaaaa@5745@

pH=p K A +log( [ A ] [AH] ) MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaamaaL4babaGaaGPaVlaaykW7caWGWbGaamisaiabg2da9iaadchacaWGlbWaaSbaaSqaaiaadgeaaeqaaOGaey4kaSIaciiBaiaac+gacaGGNbWaaeWaaeaadaWcaaqaaiaacUfacaWGbbWaaWbaaSqabeaacqGHsislaaGccaGGDbaabaGaai4waiaadgeacaWGibGaaiyxaaaaaiaawIcacaGLPaaacaaMc8UaaGPaVlaaykW7aaaaaa@5201@

 

c. Domaine de prédominance

D'après ce qui précède , log [ A ] [AH] =pHp K A MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaaciGGSbGaai4BaiaacEgadaWcaaqaaiaacUfacaWGbbWaaWbaaSqabeaacqGHsislaaGccaGGDbaabaGaai4waiaadgeacaWGibGaaiyxaaaacqGH9aqpcaWGWbGaamisaiabgkHiTiaadchacaWGlbWaaSbaaSqaaiaadgeaaeqaaaaa@48EE@ . Nous pouvons donc envisager les trois situations suivantes:

AH prédomine par rapport à A-:

[AH]>[ A ] MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaGGBbGaamyqaiaadIeacaGGDbGaeyOpa4Jaai4waiaadgeadaahaaWcbeqaaiabgkHiTaaakiaac2faaaa@40AA@  et log [ A ] [AH] <0 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaaciGGSbGaai4BaiaacEgadaWcaaqaaiaacUfacaWGbbWaaWbaaSqabeaacqGHsislaaGccaGGDbaabaGaai4waiaadgeacaWGibGaaiyxaaaacqGH8aapcaaIWaaaaa@4440@ . On en déduit pHp K A <0 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGWbGaamisaiabgkHiTiaadchacaWGlbWaaSbaaSqaaiaadgeaaeqaaOGaeyipaWJaaGimaaaa@3FD3@  et pH<p K A MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGWbGaamisaiabgYda8iaadchacaWGlbWaaSbaaSqaaiaadgeaaeqaaaaa@3E22@

 

A- prédomine par rapport à AH:

[AH]<[ A ] MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaGGBbGaamyqaiaadIeacaGGDbGaeyipaWJaai4waiaadgeadaahaaWcbeqaaiabgkHiTaaakiaac2faaaa@40A6@  et log [ A ] [AH] >0 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaaciGGSbGaai4BaiaacEgadaWcaaqaaiaacUfacaWGbbWaaWbaaSqabeaacqGHsislaaGccaGGDbaabaGaai4waiaadgeacaWGibGaaiyxaaaacqGH+aGpcaaIWaaaaa@4444@ . On en déduit pHp K A >0 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGWbGaamisaiabgkHiTiaadchacaWGlbWaaSbaaSqaaiaadgeaaeqaaOGaeyOpa4JaaGimaaaa@3FD7@  et pH>p K A MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGWbGaamisaiabg6da+iaadchacaWGlbWaaSbaaSqaaiaadgeaaeqaaaaa@3E26@

 

A- et AH sont en concentrations égales:

[AH]=[ A ] MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaGGBbGaamyqaiaadIeacaGGDbGaeyypa0Jaai4waiaadgeadaahaaWcbeqaaiabgkHiTaaakiaac2faaaa@40A8@  et log [ A ] [AH] =0 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaaciGGSbGaai4BaiaacEgadaWcaaqaaiaacUfacaWGbbWaaWbaaSqabeaacqGHsislaaGccaGGDbaabaGaai4waiaadgeacaWGibGaaiyxaaaacqGH9aqpcaaIWaaaaa@4442@ . On en déduit pHp K A =0 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGWbGaamisaiabgkHiTiaadchacaWGlbWaaSbaaSqaaiaadgeaaeqaaOGaeyypa0JaaGimaaaa@3FD5@  et pH=p K A MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGWbGaamisaiabg2da9iaadchacaWGlbWaaSbaaSqaaiaadgeaaeqaaaaa@3E24@

On résume, en général, ces situations sur le diagramme de prédominance donné ci-dessous:

 

d. Application aux indicateurs colorés

Un indicateur coloré est un couple acide/base conjuguée (on le notera: InH/In-), dont la forme acide InH et la forme basique In- ont des couleurs différentes en solution.

On admet que la solution dans laquelle se trouve l'indicateur a la couleur de la forme acide InH si: [HIn]>10[I n ] MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaGGBbGaamisaiaadMeacaWGUbGaaiyxaiabg6da+iaaigdacaaIWaGaai4waiaadMeacaWGUbWaaWbaaSqabeaacqGHsislaaGccaGGDbaaaa@4415@ . Soit KA la constante d'acidité associée à ce couple.

*    La solution aura la couleur de la forme acide si pH<p K A 1 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGWbGaamisaiabgYda8iaadchacaWGlbWaaSbaaSqaaiaadgeaaeqaaOGaeyOeI0IaaGymaaaa@3FD4@ .

*    La solution dans laquelle se trouve l'indicateur a la couleur de la forme basique si pH>p K A +1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGWbGaamisaiabg6da+iaadchacaWGlbWaaSbaaSqaaiaadgeaaeqaaOGaey4kaSIaaGymaaaa@3FCC@ .

*    La solution prendra une couleur appelée teinte sensible (mélange des couleurs dues à la forme acide et à la forme basique) si: [InH] et [In-] sont du même ordre de grandeur, donc si p K A 1pHp K A +1 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacaWGWbGaam4samaaBaaaleaacaWGbbaabeaakiabgkHiTiaaigdacqGHKjYOcaWGWbGaamisaiabgsMiJkaadchacaWGlbWaaSbaaSqaaiaadgeaaeqaaOGaey4kaSIaaGymaaaa@4698@ .

 

e. Application aux acide α MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacqaHXoqyaaa@3A44@  -aminés

Acide carboxylique

Diagramme de prédominance du couple R-COOH/R-COO-

 

Amine

Diagramme de prédominance du couple R-NH3+/R-NH2

 

acide α MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacqaHXoqyaaa@3A44@  -aminés

Un acide α MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaacqaHXoqyaaa@3A44@  -aminés possède deux groupes caractéristiques ayant des propriétés acido-basiques :

*    -OOH/-COO- (pKA1)

*    -NH3+/-NH2 (pKA2)

 

 

VII. Titrage acido-basique

1. Définition

Doser ou titrer une espèce chimique en solution consiste à déterminer la concentration molaire de cette espèce dans la solution.

Cela revient aussi à déterminer la quantité de matière de cette espèce présente dans un volume donné de cette solution.

 

2. Dosages par titrage direct

Au cours d'un dosage par titrage, l'espèce chimique à titrer (notée A) réagit avec une quantité connue d'une espèce chimique (notée B appelée espèce titrante).

Cette réaction est rapide et quasi-totale. Elle est appelée réaction support de titrage.

 

Remarque : Un dosage par titrage est une technique destructive.

 

Exemple : Titrage d'une solution d'ammoniac ( N H 3(aq) MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaad6eacaWGibWaaSbaaSqaaiaaiodacaGGOaGaamyyaiaadghacaGGPaaabeaaaaa@3DF0@  ) par de l'acide chlorhydrique ( H 3 O (aq) + MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaa0baaSqaaiaacIcacaWGHbGaamyCaiaacMcaaeaacqGHRaWkaaaaaa@3F0A@ , C l (aq) MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadoeacaWGSbWaa0baaSqaaiaacIcacaWGHbGaamyCaiaacMcaaeaacqGHsislaaaaaa@3E3A@  ).

L'équation de la réaction support de titrage s'écrit:

H 3 O (aq) + +N H 3(aq) N H 4(aq) + + H 2 O (l) MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadIeadaWgaaWcbaGaaG4maaqabaGccaWGpbWaa0baaSqaaiaacIcacaWGHbGaamyCaiaacMcaaeaacqGHRaWkaaGccqGHRaWkcaWGobGaamisamaaBaaaleaacaaIZaGaaiikaiaadggacaWGXbGaaiykaaqabaGccqGHsgIRcaWGobGaamisamaaDaaaleaacaaI0aGaaiikaiaadggacaWGXbGaaiykaaqaaiabgUcaRaaakiabgUcaRiaadIeadaWgaaWcbaGaaGOmaaqabaGccaWGpbWaaSbaaSqaaiaacIcacaWGSbGaaiykaaqabaaaaa@5442@

 

3. Mise en œuvre

Lors d'un titrage, on introduit progressivement une solution contenant l'espèce titrante B dans une solution de volume VA contenant l'espèce à titrer A.

Dans la première partie du titrage, l'espèce titrante est entièrement consommée et la quantité de réactif titré diminue.

Le montage utilisé

 

4. Équivalence lors d'un titrage

L’équivalence est l'état du système pour lequel les réactifs ont été introduits dans les proportions stœchiométriques.

On note VB le volume de réactif titrant versé et VBE celui versé à l'équivalence:

*    pour V B < V BE MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadAfadaWgaaWcbaGaamOqaaqabaGccqGH8aapcaWGwbWaaSbaaSqaaiaadkeacaWGfbaabeaaaaa@3DA6@ , le réactif titrant est limitant.

*    pour V B = V BE MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadAfadaWgaaWcbaGaamOqaaqabaGccqGH9aqpcaWGwbWaaSbaaSqaaiaadkeacaWGfbaabeaaaaa@3DA8@  le réactif titrant et le réactif titré ont été introduits dans les proportions stœchiométriques.

*    pour V B > V BE MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaaiaadAfadaWgaaWcbaGaamOqaaqabaGccqGH+aGpcaWGwbWaaSbaaSqaaiaadkeacaWGfbaabeaaaaa@3DAA@ , le réactif titré est limitant.

À l'équivalence :

n(A)=n (B) E MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaamaaL4babaGaaGPaVlaaykW7caWGUbGaaiikaiaadgeacaGGPaGaeyypa0JaamOBaiaacIcacaWGcbGaaiykamaaBaaaleaacaWGfbaabeaakiaaykW7caaMc8UaaGPaVdaaaaa@485B@   ou   C A × V A = C B × V BE MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8WjY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabaGaaiaacaqabeaadaabauaaaOqaamaaL4babaGaaGPaVlaaykW7caWGdbWaaSbaaSqaaiaadgeaaeqaaOGaey41aqRaamOvamaaBaaaleaacaWGbbaabeaakiabg2da9iaadoeadaWgaaWcbaGaamOqaaqabaGccqGHxdaTcaWGwbWaaSbaaSqaaiaadkeacaWGfbaabeaakiaaykW7caaMc8UaaGPaVdaaaaa@4D66@

 

5. Evolution du pH au cours de la réaction

L'allure générale de la courbe de titrage dépend de la nature de la solution à titrer (placée dans le bécher). S'il s'agit d'une solution acide, le pH initial est inférieur à 7 (courbe (1) ci-dessous). S'il s'agit d'une solution basique, le pH initial est supérieur à 7 (courbe (2) ci-dessous).

 

6. Détermination du point d’équivalence

Le point équivalent peut être repéré par trois méthodes. La méthode des tangentes parallèles, la méthode de la dérivée et l'utilisation d'un indicateur coloré (on parle alors d'un titrage colorimétrique).

a. Méthode des tangentes parallèles

La méthode des tangentes parallèles est une méthode graphique

 

b. Méthode de la dérivée

La méthode de la dérivée est une méthode numérique qui nécessite l'utilisation d'un ordinateur

 

c. Titrage colorimétrique

On choisit un indicateur coloré de telle façon que la détermination du point équivalent soit la plus précise possible. En général on choisit un indicateur coloré tel que le pH à l’équivalence se situe dans sa zone de virage.

Les volumes vb1 et vb2 ainsi déterminés encadrent la valeur recherchée du volume à l'équivalence.